Probability and statistics symbols


SymbolSymbol NameMeaning / definitionExample
P(A)probability functionprobability of event AP(A) = 0.5
P(A ∩ B)probability of events intersectionprobability that of events A and BP(AB) = 0.5
P(A ∪ B)probability of events unionprobability that of events A or BP(AB) = 0.5
P(A | B)conditional probability functionprobability of event A given event B occuredP(A | B) = 0.3
(x)probability density function (pdf)P( x  b) = ∫ f (x) dx
F(x)cumulative distribution function (cdf)F(x) = P(X x)
μpopulation meanmean of population valuesμ = 10
E(X)expectation valueexpected value of random variable XE(X) = 10
E(X | Y)conditional expectationexpected value of random variable X given YE(X | Y=2) = 5
var(X)variancevariance of random variable Xvar(X) = 4
σ2variancevariance of population valuesσ= 4
std(X)standard deviationstandard deviation of random variable Xstd(X) = 2
σXstandard deviationstandard deviation value of random variable XσX  = 2
medianmiddle value of random variable x
cov(X,Y)covariancecovariance of random variables X and Ycov(X,Y) = 4
corr(X,Y)correlationcorrelation of random variables X and Ycorr(X,Y) = 0.6
ρX,Ycorrelationcorrelation of random variables X and YρX,Y = 0.6
summationsummation - sum of all values in range of series
∑∑double summationdouble summation
Momodevalue that occurs most frequently in population
MRmid-rangeMR = (xmax+xmin)/2
Mdsample medianhalf the population is below this value
Q1lower / first quartile25% of population are below this value
Q2median / second quartile50% of population are below this value = median of samples
Q3upper / third quartile75% of population are below this value
xsample meanaverage / arithmetic meanx = (2+5+9) / 3 = 5.333
s 2sample variancepopulation samples variance estimators 2 = 4
ssample standard deviationpopulation samples standard deviation estimators = 2
zxstandard scorezx = (x-x) / sx
~distribution of Xdistribution of random variable X~ N(0,3)
N(μ,σ2)normal distributiongaussian distribution~ N(0,3)
U(a,b)uniform distributionequal probability in range a,b ~ U(0,3)
exp(λ)exponential distribution(x) = λe-λx , x≥0
gamma(c, λ)gamma distribution(x) = λ c xc-1e-λx / Γ(c), x≥0
χ 2(k)chi-square distribution(x) = xk/2-1e-x/2 / ( 2k/2 Γ(k/2) )
(k1, k2)F distribution
Bin(n,p)binomial distribution(k) = nCk pk(1-p)n-k
Poisson(λ)Poisson distribution(k) = λke-λ / k!
Geom(p)geometric distribution(k) =  p(1-p) k
HG(N,K,n)hyper-geometric distribution
Bern(p)Bernoulli distribution

கருத்துகள்

இந்த வலைப்பதிவில் உள்ள பிரபலமான இடுகைகள்

TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

Set theory symbols