Set theory symbols





SymbolSymbol NameMeaning / definitionExample
{ }seta collection of elementsA = {3,7,9,14},
B = {9,14,28}
A ∩ Bintersectionobjects that belong to set A and set BA ∩ B = {9,14}
A ∪ Bunionobjects that belong to set A or set BA ∪ B = {3,7,9,14,28}
A ⊆ BsubsetA is a subset of B. set A is included in set B.{9,14,28} ⊆ {9,14,28}
A ⊂ Bproper subset / strict subsetA is a subset of B, but A is not equal to B.{9,14} ⊂ {9,14,28}
A ⊄ Bnot subsetset A is not a subset of set B{9,66} ⊄ {9,14,28}
A ⊇ BsupersetA is a superset of B. set A includes set B{9,14,28} ⊇ {9,14,28}
A ⊃ Bproper superset / strict supersetA is a superset of B, but B is not equal to A.{9,14,28} ⊃ {9,14}
A ⊅ Bnot supersetset A is not a superset of set B{9,14,28} ⊅ {9,66}
2Apower setall subsets of A
\mathcal{P}(A)power setall subsets of A
A = Bequalityboth sets have the same membersA={3,9,14},
B={3,9,14},
A=B
Accomplementall the objects that do not belong to set A
A \ Brelative complementobjects that belong to A and not to BA = {3,9,14},
B = {1,2,3},
A-B = {9,14}
A - Brelative complementobjects that belong to A and not to BA = {3,9,14},
B = {1,2,3},
A-B = {9,14}
A ∆ Bsymmetric differenceobjects that belong to A or B but not to their intersectionA = {3,9,14},
B = {1,2,3},
A ∆ B = {1,2,9,14}
A ⊖ Bsymmetric differenceobjects that belong to A or B but not to their intersectionA = {3,9,14},
B = {1,2,3},
A ⊖ B = {1,2,9,14}
a∈Aelement of,
belongs to
set membershipA={3,9,14}, 3 ∈ A
x∉Anot element ofno set membershipA={3,9,14}, 1 ∉ A
(a,b)ordered paircollection of 2 elements
A×Bcartesian productset of all ordered pairs from A and B
|A|cardinalitythe number of elements of set AA={3,9,14}, |A|=3
#Acardinalitythe number of elements of set AA={3,9,14}, #A=3
aleph-nullinfinite cardinality of natural numbers set
aleph-onecardinality of countable ordinal numbers set
Øempty setØ = { }C = {Ø}
\mathbb{U}universal setset of all possible values
\mathbb{N}0natural numbers / whole numbers  set (with zero)\mathbb{N}0 = {0,1,2,3,4,...}0 ∈ \mathbb{N}0
\mathbb{N}1natural numbers / whole numbers  set (without zero)\mathbb{N}1 = {1,2,3,4,5,...}6 ∈ \mathbb{N}1
\mathbb{Z}integer numbers set\mathbb{Z} = {...-3,-2,-1,0,1,2,3,...}-6 ∈ \mathbb{Z}
\mathbb{Q}rational numbers set\mathbb{Q} = {| x=a/ba,b\mathbb{Z}}2/6 ∈ \mathbb{Q}
\mathbb{R}real numbers set\mathbb{R} = {x | -∞ < x <∞}6.343434∈\mathbb{R}
\mathbb{C}complex numbers set\mathbb{C} = {| z=a+bi, -∞<a<∞,      -∞<b<∞}6+2i ∈ \mathbb{C}

கருத்துகள்

இந்த வலைப்பதிவில் உள்ள பிரபலமான இடுகைகள்

FORMULAS FOR SHAPES

BODMAS RULE