TRIGONOMETRIC RATIOS OF COMPOUND ANGLES


About "Trigonometric ratios of compound angles"

Trigonometric ratios of compound angles :
An angle made up of the algebraic sum of two or more angles is called a compound angle.
Here, we are going see the formulas for trigonometric ratios of compound angles. 
sin (A + B)  =  sinA cosB + cosA sinB
sin (A - B)  =  sinA cosB - cosA sinB
cos (A + B)  =  cosA cosB - sinA cosB
cos (A - B)  =  cosA cosB + sinA cosB
tan (A + B)  =  [tanA + tanB] / [1 - tanA tanB]
tan (A - B)  =  [tanA - tanB] / [1 + tanA tanB]

Trigonometric ratio table

From the above table, we can get the values of trigonometric ratios for standard angles such as 0°, 30°, 45°, 60°, 90°
Now, let us look at some practice problems on "Trigonometric ratios of compound angles".

Trigonometric ratios of compound angles - Practice problems

Example 1 :
Find the value of cos15°
Solution :
First, we have to write the given angle 15° in terms of  sum or difference of two standard angles. 
So, we have 15°  =  45° - 30°
cos15°  =  cos (45° - 30°)
cos15°  =  cos45° cos30° + sin45° sin30°
Using the above trigonometric ratio table, we have
cos15°  =  (√2/2) x (√3/2) + (√2/2) x (1/2)
cos15°  =  (√6 / 4)  +  (√2/4)
cos15°  =  (√6 + √2) / 4
Hence, the value of  cos15° is equal to  (√6 + √2) / 4
Let us look at the next problem on "Trigonometric ratios of compound angles"
Example 2 :
Find the value of cos105°
Solution :
First, we have to write the given angle 105° in terms of  sum or difference of two standard angles. 
So, we have 105°  =  60° + 45°
cos105°  =  cos (60° + 45°)
cos105°  =  cos60° cos45° - sin60° sin45°
Using the above trigonometric ratio table, we have
cos105°  =  (1/2) x (√2/2) - (√3/2) x (√2/2)
cos105°  =  (√2 / 4)  -  (√6/4)
cos15°  =  (√2 - √6) / 4
Hence, the value of  cos15° is equal to (√2 - √6) / 4
Let us look at the next problem on "Trigonometric ratios of compound angles"

கருத்துகள்

இந்த வலைப்பதிவில் உள்ள பிரபலமான இடுகைகள்

பழநி மலை முருகன்

சங்குப் பூ

Types of triangle